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Abstract-A solution approach for general nonsyrnmetric time-harmonic end problems is dem­
onstrated for a semi-infinite isotropic solid circular cylinder which is traction-free on its cylindrical
surface. The present solution technique is an extension of that used in Kim and Steele (\ 989a. J.
Appl. Mech. 56, 334-346) for longitudinal axisymmetric wave propagation in a cylinder. In the
present solution procedure. the end displacement and traction are expanded by the series found by
Kim and Steele (\989b. J. Appl. Mech. 56, 910-917), and the end stiffness matrix is formed. The
insensitive nature of the solutions at the end of the cylinder to cylindrical surface conditions. as
observed by Kim and Steele (\989b), is utilized in the present solution procedure. The effectiveness
of the approach is demonstrated by an example of localized eccentric loading of the end.

I. INTRODUCTION

There has been a revived interest in the problem of elastic wave propagation in cylinders
in recent years.t Nondestructive evaluation and accurate dynamic modeling of some high­
precision instruments may be the thrust for such a trend. However, it appears that an
accurate, yet efficient solution technique is still not available for solving general end prob­
lems. Obviously, such a solution technique must be valid for both axisymmetric and
nonsymmetric wave propagation.

Devault and Curtis (1962) studied a mixed time-dependent end condition for which
either the normal stress and tangential displacements or the normal displacement and the
tangential stresses are specified at the end. Wilson (1986) used the results obtained by
McKenna and Simpkins (1985) to solve a mixed end problem. Very recently Shen (1988)
used the modal expansion in order to study transient waves by a normal point force applied
on the cylindrical surface. None ofthese investigators has considered the pure end conditions
for which either the three stress components or the three displacement components are
specified at the end. Instead, they approximate the pure end conditions by means of the
mixed conditions, which results in mathematical simplicity. Though assuming the mixed
end conditions for the pure end conditions may be reasonable for far-field solutions, it
appears that there is a need to handle the pure end conditions for either near-field or more
accurate far-field solutions.

The existing solution techniques based on the elasticity solutions such as collocation
(see, e.g. Zemanek, 1972) may be used for the general nonsymmetric case. However,
the numerical difficulties for the nonsymmetric case become more severe than for the
axisymmetric case because more displacements and/or stresses need to be matched at the
end of the cylinder.

In the present work, a solution technique is proposed as an effective alternative to
conventional solution approaches such as collocation and finite elements for the analysis of
time-harmonic nonsymmetric wave propagation in an isotropic semi-infinite solid cylinder,
which is traction-free on its cylindrical surface. The present approach is an extension of the
solution technique proposed by Kim and Steele (1989a) for the axisymmetric case to the
general nonsymmetric case. Kim and Steele (1989a) use the end stiffness matrix which
relates the harmonics of the displacements and stresses at the end of the cylinder. The
expansion sets are the series solutions of an uncoupled wave system, which yields a stiffness
matrix of a form which can be utilized for an efficient solution technique.

t The history of the analysis of the elastic waves is well described in review papers by Green (\ 960), Miklowitz
(\966), McNiven and McCoy (\974) and Pao (\983).
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Unlike the solution approach proposed by Kim and Steele (1989a) for the axisymmetric
case, the present approach for the nonsymmetric case uses the end stiffness matrix that
relates the normal components of the displacement and stress and the modified displacement
and stress quantities which Kim and Steele (l989b) have introduced. The end stiffness
matrix does not simply relate the usual displacement and stress quantities. The use of such
a stiffness matrix is crucial; first, closed-form expressions are possible for the elements of
the stiffness matrix. Furthermore, the present stiffness matrix for the traction-free case also
exhibits some asymptotic behavior, which can be utilized to enhance numerical efficiency.

For the nonsymmetric case, the proper expansions are provided by the new series
solutions by Kim and Steele (1989b) corresponding to an uncoupled wave system in a
cylinder which has been found by Kim (1989a). The stiffness matrix based on the expansions
is shown to be asymptotically equivalent to the stiffness matrix for the uncoupled wave
system, for which the harmonics are decoupled. The consequence of the asymptotic behavior
is that the stiffness matrix can be partitioned into a coupled system for lower harmonics
and a weakly coupled system for higher harmonics. Therefore, even very rapidly varying
end conditions which require a large number of harmonics can be handled effectively.

The asymptotic behavior is examined numerically, and the present stiffness matrix
approach is applied to some numerical examples and compared with the collocation method.
The reduction in the CPU time by the present method appears to be substantial even
without incorporating the asymptotic behavior of the stiffness matrix.

2. PRELIMINARIES

A solution to the wave equation for an isotropic elastic solid cylinder can be expressed
(see Kim, 1989a for detailed expressions and notations) as

u(r, 0, z, t) = o(r) {c~s n~}exp [i(Az-Qt)]
smnu

where

_ {cos no} .
(1(r,O,z,t) = (1(r) . II exp[I(A.Z-Qt)]

smnu

u,(r) = A dJnd(hr) + B(U) dJ~(kr) - c'2 In(kr)
r r r

n . n dJn(kr)
u/1(r) = -A-Jn(hr)-B(IA)-Jn(kr)+C d

r r r

uAr) = A (iA.) In(hr) +Bk2Jn(kr).

(1)

(2a)

(2b)

(2c)

Displacement u and stress (1 are the physical quantities divided by a, the radius of
cylinder, and 2/1, twice the shear modulus, respectively. The ratios of the radial and axial
coordinates to a are denoted by rand z. The dimensionless wave number A is defined as
2naiL where L is the wavelength. We also define the dimensionless frequency Q and t as
walcs and usia where w is the angular frequency, Cs is the shear wave speed, and T is the
time. The parameters h2 and k 2 are defined as

The material property (X2 is related to Poisson's ratio v:

1-2v
!X

2 = .
2(I-v)

In (1), U/1, (J,o, and (Jo: take sin nO, and the other quantities take cos nO.
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For a cylinder with a traction-free cylindrical surface (which will be called the traction­
free cylinder from now on), the frequency equation results in complicated dispersion
relations (see, e.g. Kim, 1989a; Shen, 1988) and the solutions for general end conditions
are difficult to obtain. Due to the bi-orthogonality condition (Frazer, 1975; Gregory, 1983),
however, solutions for mixed end conditions can be easily obtained. If the general solution
form for the traction-free cylinder is written for a given frequency n as

{
u(r, 8,z, t)} oc" {ijP(r)} {cosno} .

( 8 )
:; L EP -P() . 0 exp [l().PZ-Ot)],

(J r, ,z,t p=l (J r smn
(3)

where the pth expansion coefficient EP can be easily determined for mixed end conditions,

EP =

with the notationt

I [a~Ar)UAr) - u~(r)Sr(r) -uG(r)So(r)] r dr

I [a~z(r)u~(r)-u~(r)a~z(r)-uG(r)a'=(r)] rdr

I [a~(r)Sz(r) -a~Ar)Ur(r) -a~(r)Uo(r)] r dr

I [afz(r)uf(r) - u~(r)a~Ar) - u'(r)a'Ar)] r dr

Ur(r) = urlz=o; Uo(r) = uolz=o; Uz(r) = uzlz=o;

S,(r) :; O',zlz=o; So(r) = O'relz=o; Sz(r):; O'zzlz=o.

(4)

It is possible (Kim, 1989a) to have an uncoupled wave system corresponding to the
following condition on the cylindrical surface:

(5)

The latter condition corresponds to a distributed spring restraint in the circumferential
direction. Kim and Steele (1989b) show that the solutions of the cylinder with the condition
(5) provide new series which can be written as

and

00

Uz(r):; L WmJn(em r)
m=l

t The dependence of the displacement and stress on t and () wi11 be omitted.

(6a)

(6b)

(6c)

(7a)

(7b)
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CL

S=(r) = I ZmJn(~mr)
m= I

(7c)

where ~ and P are the solutions of J~(~) =°and In(p) = 0, respectively. The explicit
expressions for the expansion coefficients Um, Vm, Wm, etc. are given in Kim and Steele
(l989b). The formulas for calculation of these coefficients are uncoupled.

The expansions (6) and (7) for the displacement and stress at the end of the cylinder
are equivalent to (Kim and Steele. 1989b)

CL

U[(r) = I Um~mJn(~mr) (8a)
m=l

x

UIl(r) = I VmPmJn(Pmr) (8b)
m=1

CL

U=(r) = I WmJn(~mr) (8c)
m=1

xc

S[(r) = I Sm ~mJn (~mr) (9a)
m~1

CL

SIl(r) = I TmPmJn(Pmr) (9b)
m=!

ere

S=(r) = I ZmJn(~mr), (9c)
m=!

where

1 d n
UI = - -(rUr)+ - U8r dr r

1 d n
UlI = - <r (rUe) + - Urr r r

I d n
SI = - <r(rSr)+ -So

r r r

I d n
SlI = - <r(rS8)+ -Sr'

r r r

Based on the expansions (8) and (9), one can construct the end stiffness matrix [K] for
the cylinder with the surface condition (5) (which will be called the mixed cylinder from
now on):

~~~ ~~~] {~}
K32 K33 V

(10)

with

z = l~: ); S = l~:); T =1~:)
Znh Snh Tnh

W =1~: ); U =1~: ); V =1~:)
Wnh Unh Vnh

(11)
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where nh is the number of terms in the truncated series expansions of (8) and (9). For
general nonsymmetric wave propagation, it is crucial to use the stiffness matrix that relates
the modified quantities V" V", S/ and S" as well as the normal components of the
displacement and stress; the submatrices of[K] are merely diagonal. Ifone tried to construct
a stiffness matrix which relates usual displacement and stress for the nonsymmetric case,
the stiffness matrix would not be diagonal.

From the solutions of the mixed cylinder (see Kim and Steele, 1989b), the explicit
expressions for the diagonal elements of the stiffness matrix, which are the only nonzero
elements in [K], can be given as

n 2
"

~j(Kll)j,j = T(IAsj )

~j(K12)j,j = [(i)'dj)(i),s) - ej +n2]ej

K21j,j = K12j.j

n2

~j(K22)j,j = T(i),sj)

where

K33j,j = iA,j

K13 = K23 = K31 = K32 = 0 (12)

~j = ej- (iAdj) (iAsj) ; A~j = oc 2n2
- el ; A~ = n2

- ej; A~ = n2
- pj. (13)

The asymptotic form of [K] can be easily obtained.

3, SOLUTION PROCEDURE: MIXED END CONDITIONS

As the first step for developing the solution approach for pure end conditions in the
traction-free cylinder, we consider the solution procedure for mixed end conditions, namely,
when either (O"=z, Un uo) or (uz, o",z, 0"0,) is prescribed at the end of the traction-free cylinder.
In the present work, we expand the end displacement and stress quantities of the traction­
free cylinder in terms of expansions (8-9). Then, we form the end stiffness matrix of the
traction-free cylinder, which relates the expansion coefficients of [Vz(r), ViCr), V,,(r)], and
[S=(r), S/(r), S,,(r)].

For the mixed end conditions, matrices [A] and [B] are constructed, which are defined
by

~~~ ~~~]{~}
A32 A33 V

:~~ :~~]{:}
B32 B33 T

(14)

(15)

where Z, S, T, W, U and V are defined in (11). Obviously [B] is simply the inverse of [A];
we will directly compute either one depending on the end conditions.

In order to construct [A] and [B], we first expand the components of the eigenfunctions
of the traction-free cylinder as:

$AS 26:9/10-l

n.
ii~(r) = L Wf:,Jn(emr)

m=l

(16a)
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",
iif(r) = L ~m U{;,Jn(~mr) (16b)

m=l

",
iif/(r) = L Pm V{;,ln(Pmr) (16<:)

m=1

"
11

af:(r) = L Z;:'Jn(~mr) (16d)
m=1

nh

af(r) = L ~mS;:'Jn(~mr) (l6e)
m=1

"
11

af/(r) = L PmT;:'Jn(Pmr). (l6f)
m=!

One can show that the coefficients W;:" etc. in (16) can be determined in closed form. Note
that no contribution comes from a~(r) I,=! for S::" but that I1f(r)!,=! does contribute to
U::,. [af:(r)/,= I = 0, and uf(r)I,= I ::I 0.] Therefore, we have

where Of denotes the quantity obtained by assuming 11,(r) 1,= ! =O.
We consider the following end conditions in order to form the elements of the matrix

[AJ. First, consider an end condition at z = 0 such that

{

S:(r) = In(~mr)

U,(r) = 0

U,,(r) = 0

(17)

for a given frequency n. The pth expansion coefficient E;:' for the end condition (17) can
be obtained using the bi-orthogonality as

where DP is defined in (4) and '1m is defined as 2~;,/(~;,-n2)J;(~m)'

Then the corresponding normal displacement [Uz(r)]m at z = 0 can be expressed as

n,.

[UAr)lm = L E::'I1~(r)
p=!

nt: nh

= L L E;:' Wf In(~mr)
p=! f= I

= ~ In(emr)[i E;:' wrJ
1= I p-!

(18)

where n, denotes the number ofeigenfunctions used for the traction-free cylinder. Similarly,
the two modified stress quantities can be calculated:

[S,(r)Jm = I~I In(~mr) Ltr E;:'S::.J

[Sll(r)]m = ~ In(Pm r)[I E;:' nJ.
1= I p= I

(19)

(20)
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Thus the components of All, A21, and A31 are expressed as

n,

(All)'.m = L E~Wf for 1= 1,2, ... , nh
p=1

n,

(A21),.m = L E~Sf for 1= 1,2, ... ,nh
p=1

no'

(A31),.m = L E~Tf for 1= 1,2, ... , nh
p=1

for m = 1, 2, ... , nh'
By considering the end condition such that

1149

(2Ia)

(2Ib)

(2Ic)

(22)

the elements ofA12, A22, and A32 can be evaluated. The actual end condition corresponding
to (22) in terms of Ur(r) and Uo(r) is

SAr) = 0

U ( ) = _ ~ dJn(emr)
r r em dr

1 n
Uo(r) = ;- - In(emr).

'om r

Following the same steps for All, A21 and A31, the components of A12, etc. can be
computed.

Similarly, closed-form expressions for the elements of other submatrices of [A] and [B]
can be obtained. For later use, F~, G~, H~, H~, I~ and J~ are used to designate the expan­
sion coefficients for the end conditions

[SAr) = 0, U[(r) = emJn(emr), UI/(r) = 0],

[SAr) = 0, U[(r) = 0, UI/(r) = PmJn(Pmr)],

[Uz(r) = In(emr), S[(r) = 0, UI/(r) = 0],

[Uz(r) = 0, S[(r) = emJn(emr), UI/(r) = 0]

and

respectively.
For mixed end conditions which have been discussed in this section, the bi­

orthogonality property [see eqn (4)] can be directly used. However, the matrices [A] and
[B] will be required in forming the stiffness and flexibility matrices for pure end problems.

4. SOLUTION PROCEDURE: PURE END CONDITIONS

When either (O'z=- am O'oz) or (un u" Uo) is specified at the end of the cylinder, the bi­
orthogonality property is not directly applicable. The purpose of the present work is to
develop an efficient solution procedure which is applicable for pure end problems and useful
for both rapidly and slowly varying end conditions.

The present approach uses the following end stiffness matrix [S] (which is useful for
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displacement end conditions) :
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~~~ ~~~] {~}.
532 533 V

(23)

The submatrices of [5] can be determined from the matrix [A] in (14) as

511 = All- 1

521 = A21 . 511

531 = A31 ·511

512 = -511 . A12

522 = A22+A21'512

532 = A32 + A31 . 512

513 = -511' Al3

523 = A23+A21'5l3

533 = A33+A31·5l3. (24)

Following the procedure used to determine the stiffness matrix [5], the flexibility matrix [F]
for stress end conditions can be also constructed such that

:~~ :~~] {~}.
F32 F33 V

(25)

Replacing [A] and [5] by [B] and [F], respectively, in (24) gives the expression for the
submatrices of [F].

Since the end stiffness (or flexibility) matrix relates the displacement and stress quan­
tities only at the end, a procedure to compute the stress/displacement at z other than 0 from
the end stiffness (or flexibility) matrix is necessary. To this end, the expansion coefficients
in (3) should be determined. The procedure to compute EP is as follows.

If [vAr) -# 0, Vier) = VI/(r) = 0] is prescribed where VzCr) is given by (8c), we compute
S:(r) from the present end stiffness, and then regard the end condition as a mixed end
condition [S:(r) -# 0, Vier) = VI/(r) = 0]. For this mixed end condition, we obtain

n
h

[ nh ]
£P = L Ef:, L (511)m.1 W, .

m= I 1= I

(26)

(27)

If [V:(r) = 0, Vier) -# 0, VI/(r) = 0] is given with the expansion (8a) for VIer), S:(r) is first
computed by means of the stiffness matrix and the end condition is assumed to be [SAr) -# 0,
Vier) -# 0, VI/(r) = O].t Then the expansion coefficient £P may be written as

£P = m~1 Ef:, L~I (512)m.IV/] + m~1 Ff:,Vm.

Similarly for [V:(r) = 0, Vk) = 0, VI/(r) -# 0] in which VI/(r) is expressed by (8b), EP is
given by

(28)

The expansion coefficients for general displacement end conditions can be obtained by
superposition of the results (26), (27) and (28). The same step can be followed for stress
end conditions.

5. ASYMPTOTIC BEHAVIOR OF THE STIFFNESS MATRIX

The stiffness matrix for n = 2, v = 0.3317 and n = 2.0t has been computed and its
asymptotic nature is investigated. We choose nh = 40 (n. = 240) to construct the stiffness
matrix.

t Or we can compute S{(r) and S{,{r) first, and replace the pure end condition by the mixed end condition
[Uir) = 0, Sk) '" 0, S/{(r) '" OJ, but there is no advantage; in fact,less accurate results for £P were obtained.

t For the present choice ofn, [Sj and fKj are real-valued.
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In Fig. 1, the diagonal elements of the submatrices of [S) are compared with those of
[K). Figure la shows the relative differences of SDjJ with respect to KDjJ for I = 1,2 and
3, and it is apparent that the diagonal elements of [S) approach those of [K) rapidly. The
magnitudes of the diagonal elements of S13, S23, S31 and S32 are also plotted in Fig. lb.
This figure shows that the diagonal elements of S13, etc. approach the counterparts of K13,
etc., which are identically zero. Since the increase rates of the diagonal elements of SI1,
etc. are approximately linear in j (the index number), the relative decrease rates of the
diagonal elements of SI3, etc. with respect to the diagonal elements of SI1, etc. are very
rapid.

The present observation for SIJI,I and the investigation of the nature of the diagonal
dominance of all submatrices of S suggest the following asymptotic form of the stiffness
matrix (see Kim, 1989b for more details):

[
SIJU

SIJ = SIJL

SIJn ~ KIJ

SIJR]
SIJn

for I,J = 1,20r3. (29)

This structure (29) also applies to [A], [B] and [Fl.
The advantages of using the asymptotic structure (29) are clear. First, SIJn is simply

replaced by KIJ which are easily computed. Secondly, the matrix inversion of the form (29)
requires only the inversion ofSIJU ([S] represents any o[[S], [F], [A] and [8]) so that this
form is very useful for end problems requiring very many spatial harmonics. For detailed
accounts of this, refer to Kim and Steele (1989a). As in the axisymmetric case, we denote
the array size of SIJU by nu• For other values of n, v and n, similar asymptotic behavior
of the stiffness matrix was observed.

IS11j,j - K11jjI/IK11jJl-- ......-­

IS12jj - KI2jjI/IKI2jJl·····c.····

IS21jJ - K21jJI/IK2ijjl---'~----

IS22jj - K22j,jI/IK22jjl •

IS33jj - K33jjl/lK33jji 6

0.6

0.5
~= 0.4~

ttl
a 0.3
~

.E:

~
0.2

0.1

0
0 5 10

(a) Index of j

15 20

20 30 40

IS13jji 6

IS23jjl-~­

IS31jjl-·---­
IS32jjl-- ......--

0.18

0.15 *,I
0.12 -t~

0.09 ~ tt~

0.06 ,

0.03 ~L '--..............._--4
oo 10

(b) Index of j

Fig. I. Comparison of the diagonal elements of the end stiffness matrix [S] of the traction-free
cylinder with those of the end stiffness matrix [K] of the mixed cylinder (n = 2, v = 0.3317, n = 2).

It is seen that [S] asymptotically approaches [K].
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6. NUMERICAL EXAMPLES

Case I
The first numerical example deals with a nonzero Vll(r) end condition [V:(r) =

V/(r) = 0] such that (n = 2, v = 0.3317, n = 2)t

{

VAr) = 0

Vr(r) = sin 31tr

Vo(r) = - (sin 31tr+ 31tr cos 31tr)jn.

(30)

Figure 2 shows the stress distributions at z = 0 for the end condition (30) by the present
method with (nh = 40, nu = 20, n, = 240) and the collocation method with n, = 600. The
present results pass through the averages of the results obtained by collocation, which
exhibit local oscillatory behavior. The local oscillations appearing in the results by the
collocation methods must be due to the slow convergence for higher modes.

The first few expansion coefficients EP in (3) are listed in Table I for different numbers
of unknowns. As Table I shows, both the present and collocation methods appear to
converge rapidly for this relatively slowly varying end condition. Note that almost identical
results for the first few expansion coefficients are obtained regardless of the use of the
structure (29).

The components of the displacement and stress at various values of z (z = 0.5, I, 10
and 20) have been also computed and good agreement was observed. Tables 2 and 3 show
the CPU times in obtaining the solutions at the several values of z, and substantial saving
in the CPU time by the present method is apparent.

Case 2
Consider the following patch loading condition at z = 0 such that

{

(1, = {I for 3/8 <r < 5/8 and -1t/8 < () < 1t/8
..1. - 0 0 elsewhere

(1r: = (10: = O.

The solution for this nonsymmetric loading case has been obtained by the present
approach with nt = 20, nh = 40 and nu = 20, where nfdenotes the highest term in the Fourier
series in the circumferential direction.t

Table I. Expansion coefficients for Case I

IPI IE'I = IE21 IE'I IE41= IE51

Collocation
n,. = 150 0.2765EO 0.2160£0 0.2607£-1

Collocation
n,. = 300 0.2805EO 0.2166£0 0.2629£- I

Collocation
n,. = 600 0.2817EO 0.2168EO 0.2635£- I

Present
n" = nu = 20, n, = 120 0.286OEO 0.2175£0 0.2657£-1

Present
n" = 40, nu = 20, n, = 240 0.2841EO 0.2171EO 0.2645£-1
Present
n" = nu = 40, n, = 240 0.2838EO 0.2171£0 0.2646£-1

t More numerical examples obtained by the present approach can be found in Kim (1989b).
~ The contribution of the n = 0 mode has been taken into account by the method by Kim and Steele (I 989a).
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60

40

~
20

..=:,
fl; 0

~ -20

-40
Present (nh=n u =20)

-60
0 0.2 0.4 0.6 0.8 1.0

(a) r
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30
~ 20...
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~ 0

-10
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-30
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(b) r

40
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Present (nh=40, nu =20)

20

"i:' 10

~ 0

~ -10
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-30

-40
0 0.2 0.4 0.6 0.8 1.0

(c) r

Fig. 2. Stress distributions at z = 0 due to the end condition [U,(r) = 0, U,(r) = sin 31tr,
Uo(r) = -(sin 31tr+31tr cos 31tr)/n] for n = 2, v = 0.3317, n = 2. (a) 9l[S,(r)], (b) bY[S,(r)], and

(c) 9l[So(r)].
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Table 2. CPU time by collocation for Case I on
Convex C-I

n,. = 150

312 s

n,. = 300

1201 s

n,. = 600

5745 s

Figure 3 shows the real part of the deformed configuration of the end surface of the
cylinder (at z = 0) and the contour of the absolute value of 9l[cr::I:= 0]' The undeformed
configuration of the end surface is shown by the black mesh. It is seen that the real part of
the normal stress is reasonably well approximated with the present number of nr and nh'
Note that the real part of the end displacement is associated with end effects and the
imaginary part of the end displacement (though not shown here) corresponds to energy
propagation.

Figures 4, 5 and 6 show the absolute values of 9l[cr::J plotted on the real parts of the
deformed configurations of the cross-sections of the cylinder at z = 0.5, I and 10, respec­
tively. At z = 0.5, the localized distribution of 9l[crzz] is still noticeable, but at z = I, the
localized effect of the patch load applied at z = 0 has almost disappeared. The rapidly
attenuating nature of the end effect is well demonstrated in Figs 4, 5 and 6.

The imaginary part of cr:: at z = I is also plotted on the imaginary part of the deformed
configuration in Fig. 7. The stress distribution is almost linear in x (= r cos (J), which
appears reasonable. Other stress components were computed by the present method, and
the convergence of the present solutions was confirmed by considering solutions with
different numbers of terms in the series expansions in (J and r.

7. CONCLUSIONS

An analytic-asymptotic solution approach has been proposed for time-harmonic non­
symmetric wave propagation in a cylinder. The present solution procedure for general end
conditions employs the end stiffness matrix, which relates not only the normal components
of the displacement and stress but also the modified displacement and stress quantities
introduced by Kim and Steele (l989b). The use of such a stiffness matrix is crucial because
asymptotic solutions can be easily incorporated this way.

Numerical examples indicate that the present method is much more efficient than
conventional solution techniques such as collocation in handling general end conditions
and is capable of capturing accurately both the solution parts corresponding to local end
effects and to the far field.

Table 3. CPU time by present approach for Case I
on Convex C- 1

62 s

n" = n. = 40 n" = 40, h. = 20

181 s 117 s
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Fig. 3. Recalculated normal stress at the end surface of the cylinder
(at z = 0) on the real part of the deformed configuration for
Case 2 (Patch Loading). The localized normal displacement can be'
seen (n = 2, v = 0.3317). The black mesh represents the undeformed

configuration.

I
l__~5.107 E-6J

Fig. 4. 9l[u,,] on the real part of the deformed configuration at
z = 0.5. The stress concentration for 9l[uzz ] is still noticeable.

iR;;i TS-;~')--I
i---'-'-_··

+0.199

Fig. 5. 9l[u,,] on the real part of the deformed configuration at
z = I. The real part of the normal stress appears to be no longer

localized.
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Fig. 6. ~[cr,,] on the real part of the deformed configuration at
z = 10.

Fig. 7. .1"[<1:z ] on the imaginary part of the deformed configuration
at : = 1. The stress distribution is almost linear in x = r cos (J as

expected.

+7291 E-5
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